Computational Complexity, Fairness, and the Price of Anarchy of the Maximum Latency Problem

نویسندگان

  • JOSÉ R. CORREA
  • ANDREAS S. SCHULZ
چکیده

We study the problem of minimizing the maximum latency of flows in networks with congestion. We show that this problem is NP-hard, even when all arc latency functions are linear and there is a single source and sink. Still, one can prove that an optimal flow and an equilibrium flow share a desirable property in this situation: all flow-carrying paths have the same length; i.e., these solutions are “fair,” which is in general not true for the optimal flow in networks with nonlinear latency functions. In addition, the maximum latency of the Nash equilibrium, which can be computed efficiently, is within a constant factor of that of an optimal solution. That is, the so-called price of anarchy is bounded. In contrast, we present a family of instances that shows that the price of anarchy is unbounded for instances with multiple sources and a single sink, even in networks with linear latencies. Finally, we show that an s-t-flow that is optimal with respect to the average latency objective is near optimal for the maximum latency objective, and it is close to being fair. Conversely, the average latency of a flow minimizing the maximum latency is also within a constant factor of that of a flow minimizing the average latency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Complexity, Fairness, and the Price of Anarchy of the Maximum Latency Problem: Extended Abstract

We study the problem of minimizing the maximum latency of flows in networks with congestion. We show that this problem is NP-hard, even when all arc latency functions are linear and there is a single source and sink. Still, one can prove that an optimal flow and an equilibrium flow share a desirable property in this situation: all flow-carrying paths have the same length; i.e., these solutions ...

متن کامل

The Price of Routing Unsplittable Flow

The essence of the routing problem in real networks is that the traffic demand from a source to destination must be satisfied by choosing a single path between source and destination. The splittable version of this problem is when demand can be satisfied by many paths, namely a flow from source to destination. The unsplittable, or discrete version of the problem is more realistic yet is more co...

متن کامل

Stronger Bounds on Braess's Paradox and the Maximum Latency of Selfish Routing

We give several new upper and lower bounds on the worst-case severity of Braess’s paradox and the price of anarchy of selfish routing with respect to the maximum latency objective. In single-commodity networks with arbitrary continuous and nondecreasing latency functions, we prove that this worst-case price of anarchy is exactly n − 1, where n is the number of network vertices. For Braess’s par...

متن کامل

Fast, Fair, and Efficient Flows in Networks

We study the problem of minimizing the maximum latency of flows in networks with congestion. We show that this problem is NP-hard, even when all arc latency functions are linear and there is a single source and sink. Still, an optimal flow and an equilibrium flow share a desirable property in this situation: All flow-carrying paths have the same length, i.e., these solutions are “fair,” which i...

متن کامل

Selfish versus Coordinated Routing in Network Games

A common assumption in network optimization models is that a central authority controls the whole system. However, in some applications there are independent users, and assuming that they will follow directions given by an authority is not realistic. Individuals will only accept directives if they are in their own interest or if there are incentives that encourage them to do so. Actually, it wo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004